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Summary 

A novel procedure is presented for the automatic identification of secondary structures in proteins from 
their corresponding NOE data. The method uses a branch of mathematics known as graph theory to 
identify prescribed NOE connectivity patterns characteristic of the regular secondary structures. Reson- 
ance assignment is achieved by connecting these patterns of secondary structure together, thereby 
matching the connected spin systems to specific segments of the protein sequence. The method known 
as SERENDIPITY refers to a set of routines developed in a modular fashion, where each program has 
one or several well-defined tasks. NOE templates for several secondary structure motifs have been 
developed and the method has been successfully applied to data obtained from NOESY-type spectra. 
The present report describes the application of the SERENDIPITY protocol to a 3D NOESY-HMQC 
spectrum of the 15N-labelled luc repressor headpiece protein. The application demonstrates that: under 
favourable conditions fully automated identification of secondary structures and semi-automated 
assignment are feasible. 

Introduction 

NMR has become an important alternative to X-ray 
crystallography for biomolecular structure determination. 
Its principal advantage is the fact that it allows the study 
of biomolecules in solution, i.e., under circumstances 
closer to their physiological environment. The process of 
structure determination by NMR can be divided into four 
main stages: (i) assignments of the proton resonances; (ii) 
determination of structural constraints from NOE and J- 
coupling data; (iii) calculation of structures satisfying 
these constraints; and (iv) refinement of structures. The 
first of these stages is manually quite laborious and re- 
mams the main bottleneck of structure determination. 
However, the development of new multidimensional 
NMR techniques and the use of labelled samples (‘*N, 
r3C) (Bax and Grzesiek, 1993; Bax, 1994; Clore and Gro- 

nenborn, 1994) have heralded the advent of much on- 
going progress in this area. Further, several computation- 
al methods have been developed for the automatic assign- 
ment of protein NMR spectra (Billeter et al., 1988; Cies- 
lar et al., 1988; Eads and Kuntz, 1989; Kraulis, 1989; 
Ikura et al., 1990; Kleywegt et al., 1993; Meadows et al., 
1994). Most of these methods are based on the analysis 
of two- and three-dimensional ‘H spectra using the se- 
quential assignment strategy (Billeter et al., 1982; Wtith- 
rich, 1986). In general, all of these automated assignment 
programs contain bookkeeping features and use a step- 
wise strategy analogous to manual analysis, although the 
implementation of particular procedures may vary to 
some degree among them. Due to spectral artefacts and 
overlap of resonances, the results of the programs are not 
completely reliable and must be checked at each step. The 
main-chain-directed (MCD) approach (Nelson et al., 
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1991; Wand and Nelson, 1991) is an alternative to se- 
quential assignment which combines the assignment and 
identification of secondary structure into a single step. 
The MCD approach has been automated in a series of 
programs. With the exception of the triple-resonance 
technique (Ikura et al., 1990), which bases its assignment 
protocol on through-bond coupling through adjacent 
residues, all of the above assignment procedures rely on 
nuclear Overhauser effects (NOES) for the identification 
of proximal residues in the sequence. 

In the present report, we describe a novel method that 
uses graph theory to carry out sequence-specific assign- 
ments and to identify the regular secondary structure (a- 
helix and p-sheet) elements that are present in a protein 
molecule from NOESY-type spectra. Graph theory is a 
convenient tool for describing and analysing molecular 
connectivity and has already found many applications in 
chemistry (Artymiuk et al., 1991,1994,1995; Rouvray, 1991; 
Ujah, 1992). Furthermore, graph theory has also been 
used in pattern recognition algorithms for the assignment 
of 2D NMR spectra of peptides and proteins (Oschkinat 
et al., 19881991; Pfandler and Bodenhausen, 1988; Liu et 
al., 1990; Xu et al., 1994). The method of Xu and co- 
workers (Xu and Sanctuary, 1993; Xu et al., 1993,1994), 
for instance, uses fuzzy-graph pattern recognition and 
graph-search methodologies for the assignment of 2D ‘H 
NMR spectra. Generally, the method first identifies spin 
coupling topologies by comparing a predicted data set 
based upon the cross peaks of NMR correlation spectra 
against experimental spectra. Then, with a fuzzy-graph 
pattern recognition algorithm and applying chemical shift 
rules (GroB and Kalbitzer, 1988) these spin coupling to- 
pologies are mapped to specific amino acids using DQF- 
COSY and TOCSY/HOHAHA peak sets. Sequence-speci- 
fic assignments are achieved by creating a forest of spin 
coupling networks such that each tree in the forest con- 
sists of sequential spin graphs. An algorithm then 
searches this forest and finds the optimum sequence-speci- 
fic assignment based on a NOESY data set. 

In contrast to the pattern recognition methods men- 
tioned above, our approach, known as SERENDIPITY 
(SEcondary structuRE ideNtification in multiDImensional 
Protein specTra analysis), first identifies graph represen- 
tations of NOE patterns in the spectrum that are charac- 
teristic of the regular secondary structure. Each graph 
matched in the spectrum corresponds to independent spin 
coupling systems, which in turn correspond to individual 
amino acid residues. Assignment is then achieved, with 
manual assistance, by connecting these elucidated (sub)- 
graphs of secondary structure together, thereby matching 
the connected spin systems to specific segments of the 
protein sequence. The input data set consists of a cross- 
peak list of the NOESY spectrum acquired with a peak- 
picking routine, as implemented in the program ALISON 
(Kleywegt et al., 1993). Our procedure requires that the 

NH, Ca and Cb protons be identified in the spectrum and 
correctly associated with their respective, albeit unassign- 
ed, spin coupling system (henceforth defined in this work 
as a partial spin system). In other words, we assume that 
unambiguous partial spin systems have been identified, 
but that these spin systems have not yet been conclusively 
assigned to amino acid types (multiple possibilities exist 
for most spin systems), nor have the spin systems been 
ascribed any sequential order. Formally, the method 
generates the maximal common subgraphs (Bron and 
Kerbosch, 1973; Lau, 1989) from among the observed 
NOE graphs (derived from the NOESY spectrum) and 
the NOE-graph template of secondary structure. In other 
words, the procedure determines the set of equivalent 
protons between the NOE graphs representing the sec- 
ondary structure and the NOESY data set, respectively. 
Maximal common subgraph isomorphism algorithms have 
been used successfully to determine the similarity of speci- 
fic patterns in small molecules (Brint and Willett, 1988) 
and also in protein database searches to extract common 
secondary structural features (Grindley et al., 1993). 

In the present paper, the method is applied to the pro- 
tein lac repressor headpiece. This is a small a-helical pro- 
tein consisting of three helices (residues 6-13, 17-25 and 
34445) where 29 out of its 56 amino acid residues are in 
an a-helical conformation. The first two helices are part 
of a helix-turn-helix motif (helix II is the recognition 
helix), which is a common feature of several DNA-bind- 
ing proteins (Harrison, 1991; Brennan, 1992). At present, 
all available structural data are based solely on NMR ex- 
periments (Zuiderweg et al., 1983a,b). We first tested the 
robustness of the algorithm by applying it to simulated 
NOE data comprising patterns of ‘H-‘H distances ob- 
served in the NMR-determined structure of the Zac repres- 
sor headpiece-DNA complex (PDB code 1LCC) (Chupri- 
na et al., 1993). The method was then directly applied to 
experimental NOE data pertaining to a 3D NOESY- 
HMQC spectrum (Marion et al., 1989; Zuiderweg and 
Fesik, 1989) of the “N-1abelled Zac repressor headpiece 
protein. Fully automated identification of the secondary 
structures was successfully achieved. Sequence-specific 
assignments were performed with manual assistance. 

Materials and Methods 

Automated secondary structure iden@cation 
SERENDIPITY has been developed in a modular 

fashion, where each program has one or several well- 
defined tasks. The core programs in the SERENDIPITY 
suite utilise a maximum common subgraph isomorphism 
algorithm (Lau, 1989) to recognise patterns of NOES 
pertaining to the regular secondary structures. In the al- 
gorithm, short sequential, medium- and long-range ‘H-‘H 
distances characteristic of secondary structures and suf- 
ficiently short to be observed as NOES are matched with 
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Fig. I. Schematic representation of a graph and the isomorphism 
method used in this investigation. (a) A simple graph. (b) Generation 
of the maximal common subgraph. Two graphs and their maximal 
common subgraph, C, are represented, delineated by bold lines and 
shaded nodes. In this example, the maximum common subgraph 
consists of nodes v~, i+, v~, v5, r6 that are isomorphous to the subgraph 
of nodes n,, ns, nj, Q, rr5 because their edges are also equivalent (not 
drawn to scale). 

‘H-‘H distance constraints computed from the NOESY 
spectrum. The algorithm searches for all incidences of 
common overlap between two graphs. The method ident- 
ifies partial (NH, Ca and Ca) spin coupling systems in the 
prespecified secondary structure conformation. Sequence- 
specific assignment is then achieved by connecting these 
graphs of spin systems together and matching them to 
specific residues in the primary sequence. 

A graph-theoretical approach 
The term ‘graph’ can be used to describe any abstract 

mathematical entity which can be formulated in terms of 
objects and the connections between them. Thus, if an 
object or situation can be abstracted as a graph, then 
graph theory can be used to analyse the problem domain. 
A graph G(xE) (see Fig. 1) is a finite set of vertices P’ 
(or nodes) which are related to each other by a finite set 
of edges E (that is, EL VX P’) (Harary, 1972; Dee, 1975; 
McGregor, 1982). Each edge and each vertex may in 
addition have a label specifying certain information about 
the edge or vertex, thus constituting a labelled graph. 
Two vertices are referred to as adjacent if they are con- 
nected by an edge. Two graphs G and H are isomorphic 

if they have identical graph-theoretical properties, in 
other words, if there is a one-to-one mapping between the 
vertices of G and H such that adjacent pairs of vertices in 
G are mapped to adjacent pairs of vertices in H. A sub- 
graph of G is a subset F of the vertices of G, together 
with a subset J of the edges connecting pairs of vertices 
in F (FL Vand 1~ FX F). Thus, a common subgraph of 
two graphs G and K consists of a subgraph g of G and a 
subgraph k of K, such that g is isomorphic to k. The 
maximal common subgraph (MCS) is the largest common 
subgraph between G and K (Fig. 1). 

Secondary structure NOE-graph templates 
The problem we are confronted with is one of match- 

ing idealised secondary structure NOE graphs with NOE 
graphs pertaining to the NOESY spectrum. Inspection of 
the regular polypeptide secondary structures reveals a 
variety of backbone ‘H-‘H distances that are sufficiently 
short to be observed as NOES. For instance, the o-helix 
is primarily characterised by a close approach between re- 
sidues i and i + 3, and between residues i and i + 4, where- 
as in p-structures the individual strands consist of almost 
fully extended polypeptide segments, which excludes these 
medium-range distances and includes a prevalence of 

a 

b H4-wH 0 
I I 7 

,C N, 

‘Y AC.. 

I 

i i+l i+2 ii3 i+4 

0 N 

0 cx 

Fig. 2. Schematic of some regular secondary structures and their 
corresponding graph representations. (a) One turn of an o-helix and 
the corresponding graph representation; N, cx and l3 refer to NH, C’ 
and Cs protons, respectively. Connectivities are shown between resi- 
dues i, i+ 1, i +2, i+ 3 and i+4. Bold lines indicate interresidue con- 
nectivities, For clarity, the arrows show only some of the characteristic 
short distances that are likely to be observed as NOES. (b) Anti- 
parallel B-sheet and the corresponding graph representation; N and cx 
are as for (a). 
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Fig. 3. ‘H-‘H connectivity distances (in A) used in the regular secondary structures. (a) U-Helix and (b) B-sheet NOE-graph templates (apfl=anti- 
parallel p-sheet; pB=parallel p-sheet; i and j refer to adjacent p-strands in a p-sheet). 

short intrastrand main-chain ‘H-‘H distances. Overall, interactions are matched, thereby providing information 
helices and tight turns can be characterised by short se- about specific interactions between hydrogen atoms in 
quential and medium-range ‘H-rH distances, and p-sheets sequential and nonadjacent residues in the primary se- 
by short sequential and long-range interstrand backbone quence that give rise to a characteristic pattern of cross 
‘H-‘H distances (Wtithrich, 1986). peaks in a NOESY spectrum. 

As shown in Fig. 2, these ‘H-‘H contacts form a con- 
tinuous, dense network over the length of the secondary 
structures. Thus, the geometric arrangement of the back- 
bone protons in secondary structures, which determines 
the characteristic pattern of observed NOES, can be de- 
scribed by a labelled graph in which the vertices represent 
the NH, Ca and CD protons and the edges their interpro- 
ton distances. Each secondary structure NOE-graph tem- 
plate has been constructed to incorporate characteristic 
‘H-‘H patterns between spin systems, i.e., between spin 
system i and spin system j, where j is any spin system 
other than i and where the spin systems correspond to 
individual amino acid residues, Thus, only interresidue 

TABLE 1 
SEARCH MATRIX OF NOE GRAPH hxIV CONSISTING OF 
INTERPROTON DISTANCES (in A) 

(i+l)HN (i+2)HN (i+3)HN (i+3)HB (i+4)HN 

iHA 3.5 4.4 3.4 3.5 4.2 
iHN 2.8 4.2 *b * * 

iHB 3.3 * * * * 

a Interproton distances were compiled from systematic studies of 
standard secondary structures (Wtithrich, 1984,1986). 

b The ‘*’ represents a ‘wild card’ (i.e., infinite) error tolerance for an 
undefined distance, e.g. d&i,i + 2) (column three, row three). 
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The elucidation of sequential residues is inherent in the 
o-helical connectivity patterns, which display couplings 
between the ith residue and up to and including the i +4th 
residue (Fig. 3a). However, the situation becomes some- 
what more complicated in l3-sheet structures because of 
the long-range nature of p-sheet topology. Nevertheless, 
sequential information can be derived from intrastrand 
connectivity patterns, mainly the daN, dNN and dpN con- 
nectivities (Wtithrich, 1986) (Fig. 3B). The distance values 
adopted in the NOE-graph templates (Fig. 3) have been 
deduced following systematic studies with standard sec- 
ondary structures generated from polyalanine with trans 
peptide bonds (Schulz and Schirmer, 1979; Richardson, 
1981; Wtithrich et al., 1984; Wtithrich, 1986). One of the 
strengths of our methodology is the fact that it is not 
necessary to specify all possible distances in the secondary 
structure NOE-graph template. This feature has been 
exploited in the present work, where the templates de- 
scribed are disconnected graphs. As an example, the 
search matrix corresponding to the NOE-graph template 
hxIV (Fig. 3a) is shown in Table 1. The use of ‘wild card’ 
values (i.e., infinite error tolerances) enables the graph 
matching to be carried out. 

SERENDIPITY protocol 
A set of routines for processing NOESY cross-peak 

data into NOE graphs and identifying the secondary 
structure maximum common subgraphs within them have 
been grouped under the name SERENDIPITY The 
program, which is written in FORTRAN 77 and runs on 
Silicon Graphics Iris workstations, can be adapted to 

NOE-list 

+ 

NOE-graph template 
(e.g. a-helix, p-strand) 

NOE Graphs 

Seconda< structure 

recognition 

Assigning &arch results 
to primary sequence 

Fig, 4. General outline of the secondary structure assignment strategy 
of SERENDIPITY. 

TABLE 2 
EXTRACT OF DISTANCE CONSTRAINTS LISTa 

Lo1 c03 Distance (A) 

s24:HA s5:HN 3.5 
s24:HB s5:HN 2.6 
s24:HN s5:HN 2.4 

slO:HB s5:HN 4.1 
slO:HB s9:HN 4.0 
slO:HB s52:HN 2.9 
slO:HN s5:HN 2.1 
slO:HN s7:HN 4.1 

sl5:HA s2O:HN 3.7 
sl5:HB sl9:HN 3.4 
sl5:HB s2l:HN 4.4 
sl5:HN sl7:HN 3.0 
sl5:HN sl9:HN 3.3 
sl5:HN ~21 :HN 3.3 

a The list was compiled by grouping ‘H-‘H contacts of delineated spin 
systems together for the heteronuclear 3D [H,N,H] NOESY-HMQC 
spectrum of lac repressor headpiece. The letter ‘s’ refers to a delin- 
eated spin system. The numbering of spin systems is entirely arbit- 
rary and bears no relationship to sequential assignment. 

work with other spectral analysis programs. In the pres- 
ent work, the SERENDIPITY routines were augmented 
with the program ALISON, our in-house interactive 
graphics program. The secondary structure assignment 
strategy is illustrated in Fig. 4. 

The NOE list is a cross-peak list of the NOESY spec- 
trum, acquired with the peak-picking routine implemented 
in ALISON. This list comprises arbitrarily numbered 
NOESY cross peaks, their volumes and intensities, and 
the corresponding ‘H-‘H contact. As previously mention- 
ed, the spin systems are partial in nature (only the NH, 
Ca and Cb protons are known) and have been derived 
from other NMR (namely COSY- and TOCSY-type) 
methods. In the present case, this information was derived 
from a TOCSY spectrum of 15N-labelled Zuc headpiece. 
All intra-spin system NOES are discarded, so that the 
NOE list consists only of inter-spin system NOES. The 
spin systems have not been ascribed any sequential order 
and the amino acid type of most of the spin systems 
remains unidentified at this stage, although multiple 
‘guesses’, consistent with the available data, exist for most 
cross peaks. These guesses are generated by ALISON on 
the basis of chemical shift statistics (Richarz and Wtith- 
rich, 1978; Grol3 and Kalbitzer, 1988; Wishart et al., 
1991; Wishart and Sykes, 1994). 

For the distance calibration facility (see Fig. 4), an ap- 
proximate distance r is calculated by comparing the inte- 
grated volume v of the cross peak with the volume V~ of 
a cross peak or a set of cross peaks between protons with 
a known distance r<. SERENDIPITY uses all the intra- 
residue d,&i,i) distances found in the original NOE list to 
calibrate the NOE intensities. Due to the constraints 
imposed by the covalent structure, this distance can vary 
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only between 2.4 and 2.9 A (Billeter et al., 1982; Wtith- 
rich, 1986) and, generally speaking, the da&i) cross 
peaks should have a narrow intensity distribution consist- 
ent with this distance range. The program calculates the 
mean value of volumes of d&i,i) cross peaks and associ- 
ates this with a distance of 2.7 A. From this calibration, 
all other interspin distances in the NOE list are calcu- 
lated. The output of the distance calibration is a list of 
distance constraints associated with unidentified spin sys- 
tems. This listing is then ordered by grouping together a 
spin system and all its interspin NOES (Table 2). This or- 
dered list of distance constraints is then processed into a 
series of NOE graphs (Fig. 5), where each NOE graph 
corresponds to an individual spin system (amino acid re- 
sidue) and its partial (NH, Ca and CD protons only) inter- 
spin system ‘H-‘H contacts. Thus, a NOESY cross peak 
p(cei,cej) is considered as an edge in the NOE graph con- 
necting protons i and j. In other words, the vertices of the 
NOE graph represent protons and the edges represent the 
calculated interproton distances. The NOE graph serves 
as input for the pattern recognition analysis (see Fig. 4). 

Graph search procedure 
SERENDIPITY uses a modified maximum common 

subgraph (MCS) isomorphism algorithm to identify all 
patterns of secondary structure NOE connectivities pres- 
ent in the NOE graphs derived from the NOESY spec- 
trum. The MCS algorithm allows determination of the 
largest subgraph common to a pair of graphs. Thus, in 
the context of spectral analysis, this allows one to identify 
the extent of the secondary structure connectivity patterns 
in the NOE graphs. MCS algorithms are computationally 
expensive; comparing two graphs containing x and y 
nodes, in order to identify all subgraphs containing u 

Noe-Graph ~24 
‘H-‘H 
s24:HA 
s24:HB 
s24:HN 

s5:HN 
3.5 
2.6 
2.4 

Noe-Graph ~10 
‘H-‘H s5:HN s9:HN s52:HN s7:HN 
slO:HB 4.7 4.0 2.9 - 
slO:HN 2.7 - - 4.1 

NOE-Graph s 15 
‘H-‘H s2O:HN sl9:HN s2l:HN sl7:HN 
sl5:HA 3.7 - - - 
sl5:HB - 3.4 4.4 - 
sl5:HN - 3.3 3.3 3.0 

Fig. 5. NOE graphs processed from a NOE list extract (Table 2) from 
the 3D NOESY-HMQC spectrum of luc repressor headpiece. Delin- 
eated spin systems, labelled ‘s’, are arbitrarily numbered. Numbers in 
tabular representation refer to computed interproton distances (in A). 

nodes in common, requires up to X!Y! / U(X - u)!@- u)! 
node-to-node comparisons. The identification of the lar- 
gest common subgraph is achieved with u equal to 1, 2, 
etc. until it is no longer possible to identify a larger com- 
mon subgraph (i.e., the condition (15 u 5 minimum {x,~}) 
is reached). In order to reduce the number of compari- 
sons that need to be carried out, SERENDIPITY uses a 
graph-theoretic technique known as clique detection. A 
clique is a subgraph of a graph in which every node is 
connected to every other node, and which is not con- 
tained in any larger subgraph. The input to the clique 
detection procedure is a correspondence graph, i.e., an 
intermediate data structure that contains all possible 
equivalencies between the two graphs being compared. 
The identification of the largest clique in the correspon- 
dence graph gives the MCS between the two graphs. 
Specifically, given a pair of graphs G and H, a correspon- 
dence graph C is formed as follows: 

(1) Create the set of all pairs of nodes, one from G and 
one from H, such that the nodes of each pair are of the 
same type. 

(2) The correspondence graph C is the graph whose 
nodes are the pairs from (1). Thus, two nodes (G(I),H(X)) 
and (G(J),H( Y)) are considered as being connected in C 
if the values of the edges from G(1) to G(J) and H(X) to 
H(Y) are the same. 

(3) Maximal common subgraphs then correspond to 
the cliques in the correspondence graph C (Barrow and 
Burstall, 1976). 

Thus, the identification of the maximal common sub- 
graph for a pair of NOE graphs, where the nodes and 
edges correspond to the protons and to the interproton 
distances, respectively, is equivalent to the identification 
of the largest clique in the correspondence graph. In 
addition, the method may also be used to identify all of 
the subgraphs in common when matching NOE graphs, 
not just the largest subgraph. 

In the present work, the nodes of the two NOE graphs 
are paired to form a correspondence graph if the pair of 
protons in question are of the same type, for instance, 
either both Ca protons or both C? protons. In practical 
applications, an exact matching of the secondary structure 
NOE-graph template with the spectrum NOE graph is 
not possible; therefore it is necessary to allow for some 
deviation in the matching of the interproton distances. 
The correspondence graph nodes are considered to be 
connected if the differences between the interproton dis- 
tances for the two pairs of protons are below some user- 
specified tolerance, e.g. * 20% of the NOE-graph template 
distance. Therefore, the condition to match NOES as 
edges is of the form r[ < r < r*{, where r is the NOE-graph 
template distance and r,, and rl are the upper and lower 
distance tolerances, respectively. 

The correspondence graph is set up as a symmetrical 
Boolean matrix of size NX N, where N is the number of 
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nodes in the correspondence graph, C. The diagonal 
elements of the correspondence graph matrix are set to 
TRUE, whereas all other elements in the matrix are set to 
TRUE or FALSE, depending on whether the two corre- 
spondence graph nodes involved are connected or not. 
Cliques within C are located by finding the largest subset 
of the matrix whose elements are all true. The clique 
detection algorithm is a depth-first, backtracking tree 
search. A complete description of the algorithmic pso- 
cedure can be found elsewhere (Bron and Kerbosch, 1973; 
Lau, 1989; Grindley et al., 1993). 

Optimising search procedures 
The introduction of distance tolerances tends to pro- 

duce multiple mappings for a given NOE-graph template. 
However, only one of the mappings for a q-sized clique 
(where q is the number of edges) can be accepted as the 
correct solution. In order to reduce the number of unde- 
sirable solutions, we have allocated weights to the match- 
ing of a combination of specific edges- These weights are 
dependent on the type of secondary structure that is being 
identified. For instance, the identification of strong dNN 
NOES combined with d&i,i + 3) and d&i,i +4) NOE 
connectivities is highly indicative of the presence of ct- 
helices, as is the combination of interstrand da= contacts, 
strong sequential daN contacts and weak dNN contacts for 
p-sheet structures. Thus, adopting this approach, we 
select only those matched common subgraphs comprising 
the combination of the edges as specified above for CX- 
helix and p-sheet NOE graphs, respectively. The imple- 
mentation of such weights leads to substantia1 reductions 
in the number of mappings. The method can be used to 
identify just the largest common subgraph (obtained as 
the result of an exhaustive tree search that identifies all 
mappings that are common to the two NOE graphs), or 
all common subgraphs that are larger than some user- 
defined minimum clique size (Grindley et al., 1993). This 

Fig. 6. MOLSCRIPT schematic (Kraulis, 1991) of the tertiary struc- 
ture of the luc repressor headpiece protein. 

TABLE 3 
PERCENTAGE OF a-HELIX REGIONS IDENTIFIED IN SIM- 
ULATED NOE DATA FROM THE l~c HEADPIECE PROTEIN 

NOE-graph 
template’ 

No. of nodes of detected (sub)graphs 

4 5 6 I 

hx1 (5) 19 19b.c 21 21 
14 12d 14 14 

hxlI (6) 90 90 16 69 21 21 
I6 11 8 9 14 14 

hxIl1 (6) 19 12 28 28 1 1 
21 12 3 3 0 0 

hxIV (8) 90 83 16 69 31 31 10 10 
24 8 19 13 10 10 0 0 

hxV (8) 83 83 48 45 14 14 
25 11 22 13 cl 0 

a Numbers in brackets give the nodal size of the NOE-graph template. 
’ The first row of numbers for each of the graph templates refers to 

the percentage of successfully identified a-helical regions. 
’ The second column under each nodal heading gives the results 

obtained using selective edge retrieval. 
’ The second row of numbers for each graph template refers to the 

percentage of incorrect soiutions obtained. 

restriction is imposed to reduce the number of undesirable 
mappings consisting primarily of small common sub- 
graphs that have little or no significance. 

Applications 
The method was applied to NOE data pertaining to 

the lac repressor headpiece protein, which is the N-ter- 
minal domain of the monomeric subunit of the lac re- 
pressor protein. A schematic of the tertiary structure of 
lac headpiece is given in Fig. 6. The structure of lac head- 
piece has been determined by NMR (Kaptein et al., 1985; 
De Vlieg et al., 1986,1988), as has the structure of the 
complex of lac headpiece and an 1 l-base-pair lac half- 
operator (Chuprina et al., 1993). This complexed struc- 
ture has been deposited in the Brookhaven Protein Data 
Bank (PDB code 1LCC) and is used in the application 
pertaining to simulated NOE data described below. Hy- 
drogen atoms were added to 1LCC with the Insight pro- 
gram (InsightII, Version 2.2.0, Biosym Technologies, San 
Diego, CA, 1993) using standard protein bond lengths 
and geometry. 

The SERENDIPITY protocol was applied to experi- 
mental NOE data from a 3D NOESY-HMQC spectrum 
(Marion et al., 1989; Zuiderweg and Fesik, 1989) of the 
15N-labelled lac repressor headpiece protein, measured in 
95% HzO/5% DzO, pH 4.5 at 500 MHz and 298 K. The 
NH, Ca and Cb protons of the spin systems had previous- 
ly been assigned using 2D NMR methods (Zuiderweg et 
al., 1983b). An NOE list was generated by ALISON in 
which the sequential assignment of the spin systems in- 
volved was not known, although multiple guesses existed 
for most spin systems. The method considers each of 
these possibilities and attempts to match them with the 
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TABLE 4 
SEARCH MATRIX OF NOE-GRAPH TEMPLATE hxr CONSISTING OF INTERPROTON DISTANCES (in A) 

(i,i- 1)HA (i,i - 2)HA (i,i - 3)HA (i,i - 4)HA (i,i- 1)HN (i,i - 2)HN 

iHN 3.5 4.2 3.4 4.3 2.8 4.4 
iHB *b * 3.2 * * * 

(i,i - 1)HB 

3.2 
* 

a Interproton distances were compiled from systematic studies of standard secondary structures (Wtithrich, 1984,1986), 
’ The ‘*’ represents a ‘wild card (i.e., infinite) error tolerance for an undefined distance. 

primary sequence. This NOE list served as input to SER- 
ENDIPITY. The results obtained are presented below. 

Results 

Simulated NOE data 
A computer program was used to extract all main- 

chain ‘H-‘H distances and to form a distance constraint 
list. From this listing, 55 NOE graphs were constructed, 
where the vertices corresponded to the main-chain pro- 
tons and the edges to the interproton distances. As previ- 
ously mentioned, lac headpiece is an o-helical protein, 
where 29 out of its 56 amino acid residues are in a-helical 
conformation (Chuprina et al., 1993). &Helix NOE-graph 
templates (Fig. 3) were used to identify the spin systems 
in o-helical regions. In order to simulate the situation en- 
countered when dealing with unassigned spin systems, the 
sequence numbering and residue identity were concealed, 
hence all results were obtained without prior knowledge 
of either the sequence ordering or the identity of the 
amino acid residue. Only the proton type and the inter- 
proton distances were used to recognise patterns. 

For clarity, these results are presented in Table 3. For 
each pattern, the first row of numbers refers to the per- 
centage of a-helical regions in the protein that was suc- 
cessfully identified. The second row refers to the percen- 
tage of incorrect solutions obtained. From the table we 
see that both the hxI1 and hxIV patterns were very suc- 
cessful, identifying up to 90% of the helical regions. Ne- 
vertheless, as with all of the patterns, the degree of false 
identifications (i.e., the percentage of spin systems wrong- 
ly identified as o-helical) is quite high, sometimes reach- 
ing 25%. Implementing the weighting procedure, where 
only those subgraphs containing a combination of dNN, 
d,&i,i+ 3) and da&j +4) distances are considered, re- 
duces the number of false solutions, whilst the percentage 
of correct solutions remains essentially the same (see 
Table 3). Once again, the best results were obtained with 
the hxI1 and hxIV NOE graphs. However, all of these 
patterns are somewhat inadequate at identifying terminal 
o-helical residues, as the d,&i,i + 3) and d&i,i + 4) con- 
nectivities are generally not found at the end of cz-helices. 
This feature was addressed by the use of an additional 
NOE-graph template, hxr (Table 4) which simply com- 
prises the ‘reverse’ of the ‘H-‘H distances found in the o- 
helix NOE graphs shown in Fig. 3. The reverse template 

is more suitable for identifying the C-terminal regions of 
helices. Unmasking the amino acid identities of the 55 
NOE graphs, we summarise the results obtained from the 
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%I 
ZOVAL 

ZISER 
22ARG 
23VAL 
24VAL 

2% 
27ALA 

28SER 
29H/S 

30VAL 
31SER 
32ALA 
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34THR 
35ARG 

%% 
38VAL 

%%z 
41ALA 

42MET 
43ALA 
44GLlJ 
45LEU 

%E 

53ALA 
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55GLN 1 
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Pattern size 
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Fig, 7. Results from an analysis of lac headpiece data with hxI1 and 
hxr NOE-graph templates. As indicated, the patterned bars depict 
those residues identified by the hxI1 and/or the hxr NOE graphs. Plain 
bars depict an incorrect analysis (see text for further details). 



combined use of the hxI1 and hxr NOE-graph templates 
in Fig. 7. It can be seen that all of the spin systems in IX- 
helical conformations are now completely identified. Only 
three spin systems were incorrectly identified as being in 
a-helical conformations. These were unmasked and dis- 
covered to be Ser16, Ala3’ and Ala33. These residues im- 
mediately precede the beginning of helix II (Se?j) and 
helix III (Ala32, Ala33), respectively. Closer inspection of 
the interproton distances manifested by these residues 
reveals the presence of the d&i,i + 3) and d&i,i + 4) dis- 
tance ranges. Furthermore, secondary structure classifica- 
tions using the algorithm developed by Kabsch and San- 
der (1983) as implemented in the program PROCHECK 
(Laskowski et al., 1993) classify Ser16 ($=-66.&v= 151.8) 
as an extension of an a-helix (i.e., a partial cr-helical 
conformation, helical v but different $J and commonly 
found at the termini of helices) and Ala3’ (o=-55.4,tlr= 
-52.4) and Ala33 ($ =-48.1,~= -43.5) as m-helical. Thus, 
although not classified as a-helical in the NMR-deter- 
mined structure (Chuprina et al., 1993), these residues are 
found in a-helix-type conformations and hence were duly 
identified by the o-helix NOE-graph template. 

Using the hxI1 template and selective weighting, where 
only those cliques mapping a combination of dNN, d,.&,i 
+ 3) and d&i,i + 4) distances were accepted, resulted in a 
total of 487 mappings (Supplementary Material; Table 5). 
Cliques of four and five nodes were generated with an 
edge tolerance of 25%, and cliques of six nodes with an 
edge tolerance of & 30%. Linking the correct graph map- 
pings together from the set of generated mappings was 
done manually by beginning with the largest cliques of six 
nodes (for which fewer mappings were present), and then 
forming a sequence with those graphs exhibiting a con- 
tiguous pattern of sequential protons. The procedure is 
exemplified in Fig. 8, where we begin by examining the 
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six-node clique mapped by NOE graph number 3 (~3) (the 
numbering of NOE graphs is arbitrary). This was the 
only mapping generated at this size. NOE graph number 
28 (~28) also generated one solution at this clique size; 
however, s3 was chosen as fewer cliques were mapped in 
s3 in total. According to the graph-matching, ~14 is the 
sequential (i+ 1) neighbour of s3. NOE graph sl4 maps 
two six-node cliques. Both of these mappings share a 
common sequence up to and including i + 2. The sequence 
mapped by the first of these overlaps precisely with the 
sequence described by s3 and hence this mapping is ac- 
cepted. From these solutions, NOE graph s5 is found to 
be the sequential neighbour of ~14. NOE graph s5 maps 
four six-node cliques, which all share a common i + 1 
neighbour, NOE graph ~16. This graph maps two six- 
node cliques, both of which share common sequential 
neighbours up to and including i+2. Therefore, on the 
basis of this analysis we accept the sequence 

s3 sl4 s5 ~16 s7 s8 

which unmasks to reveal the residues 

8asp 9val 1 Oala llglu 12tyr 13ala 

Continuing with this analysis of the six-node cliques and 
then looking for overlapping sequences among the five- 
and four-node cliques, we succeeded in elucidating three 
contiguous sequences which, when unmasked, comprised 
the correct sequence of spin systems, residues 6-l 5, 17-26 
and 32-45. The sequential nature of the a-helix tempIates 
facilitates the elucidation of further residues that are 
adjacent to the helical residues (6-13, 17-25 and 34-45). 

The present application demonstrates the o-helix ident- 
ification facility of SERENDIPITY. The matching of 

HxH NOE-Graph Template Nodes 

Mappings iHA iHN (i+l)HN (i+2)HN (i+3)HN (i+4)HN 

s3 3HA 3HN 14HN 5HN 16HN 7HN 

s14 14HA ~ 14HN JHYJ m pliJ 8HN 

s14 14HA m m m 8HN 7HN 

S5 5HA Ji!I!H ~ 16HN pxJ 20HN 19HN 

s5 5HA JHJ m m 20HN 25HN 

S5 5HA JEIJ m 8HN 20HN 25HN 

s5 5HA JHJ m 8HN 20HN 19HN 

~16 16HA m m m 20HN 19HN 

~16 16HA m pIJ &EJ 19HN 20HN 

Sequence accepted: s3 s14 s.5 ~16 s7 s8 

Fig. 8. The process of linking delineated spin systems from the set of generated mappmgs to form a sequence, beginning with the largest chque 
of six nodes of s3 (for which only one mapping was present) and then forming a sequence with those NOE graphs which exhibited an overlapping 
pattern of sequential protons (see text for further details). The NOE graphs which form the accepted sequence are underlined. 
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delineated spin systems to the primary sequence was done 
with NOE data from a 3D NOESY-HMQC spectrum and 
is described below. 

Experimental NOE data 
The 3D NOESY-HMQC spectrum was used as basic 

input for the ALISON program, which was utilised for 
the automatic picking of cross peaks. The peak data set 
was manually edited, and spurious cross peaks were dele- 
ted. Authentic peaks that were unpicked for one reason or 
another (e.g. peak overlap) were picked manually and the 
sizes of their peak boxes were readjusted where necessary 
to represent the number and size(s) of the peak(s) present. 
Figure 9 shows a cross section of the 3D NOESY-HMQC 
spectrum of the 15N-labelled Zac repressor headpiece pro- 
tein in HXO. The characteristic connectivities of Valz3 
(located in helix II) are exemplified in the figure. 

ALISON generated an NOE list consisting of 29 1 cross 
peaks involving interactions between protons in partial 
spin systems. This NOE list served as input to SEREN- 
DIPITY. In the distance calibration procedure, 42 d&i,i) 
interactions were elucidated from the NOE list and used 
to compute the distance constraints. These were processed 
into 48 NOE graphs (Fig. 5) which were numbered ac- 
cordingly. 

The hxI1 and hxIV NOE-graph templates were used 
for the subgraph isomorphism and only those cliques con- 
taining a combination of dNN, d&i,i + 3) and d&i,i + 4) 
distances were selected automatically. Finally, the hxr 
NOE-graph template was used to elucidate terminal helix 
residues, A total of 387 multiple mappings were generated 
using the hxI1, hxIV and hxr NOE-graph templates (Sup- 
plementary Material; Table 6). An edge tolerance of 
k 50% was used in all searches. Following the procedure 
outlined for the simulated data set, we attempted to join 
the mapped subgraphs into contiguous sequences. As 
before, beginning with the largest cliques, we first con- 
sidered NOE graph ~40 (once again, the numbers were 
arbitrarily generated, referring to delineated spin systems 
from the NOE list). This NOE graph mapped two sol- 
utions for a six-node clique. Both of these mappings 
shared a common sequence up to and including the third 
sequential residue. This common sequence is ~40, ~16, ~27, 
~33, where both NOE graphs ~16 and ~27 featured in the 
mapping solutions of NOE graph 40, yet neither of these 
graphs produced any mappings that satisfied the given 
search criteria. NOE graph ~33 produced seven five-node 
solutions. Analysing these mappings and also the cliques 
of their sequentially mapped NOE graphs, we deduced 
the following contiguous sequence: 

NOE graph ~49 did not generate any cliques during the 
graph-search procedure, but was itself mapped as a se- 

Arg 51 w 

Val23 tw Thr 34 rw 

Gin 18 tm Gin 26 w Thr 19 Nti 

6.60 8.40 

Fig. 9. A cross section of the 3D NOESY-HMQC spectrum of the 
15N-labelled lac repressor headpiece protein in H20. The characteristic 
connectivities of Va? (located in helix II) are outlined. 

quential neighbour of NOE graph ~48. Continuing with 
the four six-node mappings generated by searching NOE 
graph sl, and considering all pathways, elucidated the 
following sequence of NOE graphs (i.e., delineated spin 
systems): 

sl SlO s3 ~12 s5 s6 sl4 s7 (4 

Continuing with the four five-node mappings generated 
by ~29 and then looking at smaller four-node cliques, we 
elucidated the sequence 

sl5 s4 s9 s28 s20 ~29 (3) 

Evidently, this procedure of joining the correct se- 
quence of NOE graphs together becomes far more com- 
plicated as the number of possible graph solutions in- 
creases; thus, further work is necessary to formalise a 
procedure that can automatically identify the correct 
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sequential assignment from the set of possible candidates. 
This could be achieved by a combinatorial minimisation 
methodology (Christofides et al., 1979). 

As previously mentioned, the amino acid identity of 
the delineated spin systems is unknown. However, ‘guess- 
es’ consistent with the available COSY and TOCSY data 
can be generated by the program ALISON on the basis 
of chemical shift statistics. From such an analysis, NOE 
graph 14 is designated as a glycine residue, NOE graphs 
3, 6 and 33 as alanine residues, and NOE graphs 7, 9, 10, 
29 and 40 as valine residues. Sequence (2) is then 

sl SlO ala s12 s5 ala !dY val 

which, upon examination of the primary sequence can 
map only onto the stretch of residues 

8asp 9val lOala 1 lglu 12tyr 13ala 

WdY Viva1 

In the same way, sequence (I) was mapped onto the 
primary sequence comprising 37lys-4Sile, and sequence 
(3) onto residues lSgln-23val. Manual assignment of the 
3D NOESY-HMQC spectrum (M. Slijper, 1994, personal 
communication) successfully verified these results. 

Conclusions 

We have described a novel method for the automatic 
identification of secondary structures in proteins from 
their corresponding NOE data. Using distance constraints 
derived from the NMR-determined complex of Zac head- 
piece and, subsequently, NOE data from a 3D NOESY- 
HMQC spectrum of 15N-labelled lac headpiece, we have 
shown that under favourable conditions fully automated 
identification of the secondary structures is feasible. Then, 
with manual assistance, the secondary structures can be 
assigned. In many instances multiple mappings for a 
given template may occur. However, the number of map- 
pings is drastically reduced when the size of the matched 
subgraph increases and by selectively retrieving specific 
combinations of secondary structure-dependent edges. 
Additional research in further developing the assignment 
strategy is currently underway in order to alleviate the 
manual effort involved in linking the correct sequence of 
NOE graphs together from the set of possible subgraphs 
generated, and to match these NOE graphs to the pri- 
mary sequence. However, the SERENDIPITY protocol 
provides a potential aid to automated assignment and a 
means to rapidly and comprehensively assess the second- 
ary structure content of a protein from its NOE data set. 
It is expected that the ongoing development of this proto- 
col and its use in the program ALISON will provide a 
powerful tool for computer-assisted assignment and sec- 
ondary structure analysis of protein NMR spectra. 
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